No room to hide: implications of cosmic-ray upscattering for GeV-scale dark matter

Author:

Alvey James,Bringmann TorstenORCID,Kolesova Helena

Abstract

Abstract The irreducible upscattering of cold dark matter by cosmic rays opens up the intriguing possibility of detecting even light dark matter in conventional direct detection experiments or underground neutrino detectors. The mechanism also significantly enhances sensitivity to models with very large nuclear scattering rates, where the atmosphere and rock overburden efficiently stop standard non-relativistic dark matter particles before they could reach the detector. In this article, we demonstrate that cosmic-ray upscattering essentially closes the window for strongly interacting dark matter in the (sub-)GeV mass range. Arriving at this conclusion crucially requires a detailed treatment of both nuclear form factors and inelastic dark matter-nucleus scattering, as well as including the full momentum-transfer dependence of scattering amplitudes. We illustrate the latter point by considering three generic situations where such a momentum-dependence is particularly relevant, namely for interactions dominated by the exchange of light vector or scalar mediators, respectively, and for dark matter particles of finite size. As a final concrete example, we apply our analysis to a putative hexaquark state, which has been suggested as a viable baryonic dark matter candidate. Once again, we find that the updated constraints derived in this work close a significant part of otherwise unconstrained parameter space.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Reference167 articles.

1. G. Bertone, D. Hooper and J. Silk, Particle dark matter: Evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [INSPIRE].

2. M.W. Goodman and E. Witten, Detectability of Certain Dark Matter Candidates, Phys. Rev. D 31 (1985) 3059 [INSPIRE].

3. LZ collaboration, First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment, arXiv:2207.03764 [INSPIRE].

4. PandaX-4T collaboration, Dark Matter Search Results from the PandaX-4T Commissioning Run, Phys. Rev. Lett. 127 (2021) 261802 [arXiv:2107.13438] [INSPIRE].

5. XENON collaboration, Dark Matter Search Results from a One Ton-Year Exposure of XENON1T, Phys. Rev. Lett. 121 (2018) 111302 [arXiv:1805.12562] [INSPIRE].

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An improved bound on accelerated light dark matter;Science China Physics, Mechanics & Astronomy;2024-01-09

2. Search for Boosted Dark Matter in COSINE-100;Physical Review Letters;2023-11-16

3. Direct detection of cosmic ray-boosted puffy dark matter;Nuclear Physics B;2023-10

4. Starburst Galactic Nuclei as Light Dark Matter Laboratories;Physical Review Letters;2023-09-15

5. Accelerated-light-dark-matter–Earth inelastic scattering in direct detection;Physical Review D;2023-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3