Effects of first-line diabetes therapy with biguanides, sulphonylurea and thiazolidinediones on the differentiation, proliferation and apoptosis of islet cell populations

Author:

Sarnobat D.ORCID,Moffett R. C.ORCID,Flatt P. R.ORCID,Tarasov A. I.ORCID

Abstract

Abstract Aims Metformin, rosiglitazone and sulfonylureas enhance either insulin action or secretion and thus have been used extensively as early stage anti-diabetic medication, independently of the aetiology of the disease. When administered to newly diagnosed diabetes patients, these drugs produce variable results. Here, we examined the effects of the three early stage oral hypoglycaemic agents in mice with diabetes induced by multiple low doses of streptozotocin, focusing specifically on the developmental biology of pancreatic islets. Methods Streptozotocin-treated diabetic mice expressing a fluorescent reporter specifically in pancreatic islet α-cells were administered the biguanide metformin (100 mg/kg), thiazolidinedione rosiglitazone (10 mg/kg), or sulfonylurea tolbutamide (20 mg/kg) for 10 days. We assessed the impact of the treatment on metabolic status of the animals as well as on the morphology, proliferative potential and transdifferentiation of pancreatic islet cells, using immunofluorescence. Results The effect of the therapy on the islet cells varied depending on the drug and included enhanced pancreatic islet β-cell proliferation, in case of metformin and rosiglitazone; de-differentiation of α-cells and β-cell apoptosis with tolbutamide; increased relative number of β-cells and bi-hormonal insulin + glucagon + cells with metformin. These effects were accompanied by normalisation of food and fluid intake with only minor effects on glycaemia at the low doses of the agents employed. Conclusions Our data suggest that metformin and rosiglitazone attenuate the depletion of the β-cell pool in the streptozotocin-induced diabetes, whereas tolbutamide exacerbates the β-cell apoptosis, but is likely to protect β-cells from chronic hyperglycaemia by directly elevating insulin secretion.

Funder

Diabetes UK

Ulster University

Publisher

Springer Science and Business Media LLC

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3