$$\ell _2$$-penalized approximate likelihood inference in logit mixed models for regional prevalence estimation under covariate rank-deficiency

Author:

Krause JoschaORCID,Burgard Jan Pablo,Morales Domingo

Abstract

AbstractRegional prevalence estimation requires the use of suitable statistical methods on epidemiologic data with substantial local detail. Small area estimation with medical treatment records as covariates marks a promising combination for this purpose. However, medical routine data often has strong internal correlation due to diagnosis-related grouping in the records. Depending on the strength of the correlation, the space spanned by the covariates can become rank-deficient. In this case, prevalence estimates suffer from unacceptable uncertainty as the individual contributions of the covariates to the model cannot be identified properly. We propose an area-level logit mixed model for regional prevalence estimation with a new fitting algorithm to solve this problem. We extend the Laplace approximation to the log-likelihood by an $$\ell _2$$ 2 -penalty in order to stabilize the estimation process in the presence of covariate rank-deficiency. Empirical best predictors under the model and a parametric bootstrap for mean squared error estimation are presented. A Monte Carlo simulation study is conducted to evaluate the properties of our methodology in a controlled environment. We further provide an empirical application where the district-level prevalence of multiple sclerosis in Germany is estimated using health insurance records.

Funder

Spanish Grant

Deutsche Forschungsgemeinschaft

Scientic Institute of the German Public Health Insurance Company

Publisher

Springer Science and Business Media LLC

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Reference49 articles.

1. Akaike H (1974) A new look at the statistical model identification. IEEE Transactions Automatic Control 19(6):716–723

2. AOK Bundesverband (2018) Zahlen und Fakten 2018 mit zusätzlichen Grafiken zur Pflegeversicherung. https://aok-bv.de/imperia/md/aokbv/aok/zahlen/zuf_2018_ppt_final.pdf

3. Berg, EJ (2010) A small area procedure for estimating population counts doctoralthesis, Iowa State University

4. Bergstra J, Bengio Y (2012) Random search for hyper-parameter optimization. J Mach Learn 13:281–305

5. Boubeta M, Lombardía MJ, Morales D (2016) Empirical best prediction under area-level poisson mixed models. TEST 25:548–569

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3