Small area estimation of labour force indicators under unit-level multinomial mixed models

Author:

Bugallo María1ORCID,Esteban María Dolores1ORCID,Hobza Tomáš2ORCID,Morales Domingo1ORCID,Pérez Agustín3ORCID

Affiliation:

1. Center of Operations Research, Miguel Hernández University of Elche , Edificio Torretamarit - Avda. de la Universidad s/n, Elche (Alicante) 03202 , Spain

2. Department of Mathematics, Czech Technical University in Prague , Czech Republic - Trojanova 13, 120 00 Praha 2 , Czech Republic

3. Department of Economic and Financial Studies, Miguel Hernández University of Elche , Edificio La Galia - Avda. de la Universidad s/n, Elche (Alicante) 03202 , Spain

Abstract

Abstract This paper presents a new statistical methodology for the small area estimation of the proportion of employed, unemployed and inactive people, and of unemployment rates. The novel empirical best and plug-in predictors are based on a multinomial mixed model that is fitted to unit-level data. Model parameters are estimated by maximum-likelihood and mean-squared errors by parametric bootstrap. Several simulation experiments are carried out to empirically investigate the properties of these estimators and predictors. Finally, a detailed application to real data from the first Spanish Labour Force Survey of 2021 is included, where the target is to map labour force indicators by province, sex, and age group.

Funder

European Regional Development Fund-Project

Publisher

Oxford University Press (OUP)

Reference45 articles.

1. An adaptive algorithm for the approximate calculation of multiple integrals;Berntsen;Transactions on Mathematical Software,1991

2. Empirical best prediction under area-level Poisson mixed models;Boubeta;TEST,2016

3. Poisson mixed models for studying the poverty in small areas;Boubeta;Computational Statistics and Data Analysis,2017

4. M-quantiles;Breckling;Biometrika,1988

5. L2-penalized temporal logit mixed models for the estimation of regional obesity prevalence over time;Burgard;Statistical Methods in Medical Research,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3