Abstract
AbstractIn this paper we prove some integral estimates on the minimal growth of the positive part $$u_+$$
u
+
of subsolutions of quasilinear equations $$\begin{aligned} \textrm{div}A(x,u,\nabla u) = V|u|^{p-2}u \end{aligned}$$
div
A
(
x
,
u
,
∇
u
)
=
V
|
u
|
p
-
2
u
on complete Riemannian manifolds M, in the non-trivial case $$u_+\not \equiv 0$$
u
+
≢
0
. Here A satisfies the structural assumption $$|A(x,u,\nabla u)|^{p/(p-1)} \le k \langle A(x,u,\nabla u),\nabla u\rangle $$
|
A
(
x
,
u
,
∇
u
)
|
p
/
(
p
-
1
)
≤
k
⟨
A
(
x
,
u
,
∇
u
)
,
∇
u
⟩
for some constant $$k>0$$
k
>
0
and for $$p>1$$
p
>
1
the same exponent appearing on the RHS of the equation, and V is a continuous positive function, possibly decaying at a controlled rate at infinity. We underline that the equation may be degenerate and that our arguments do not require any geometric assumption on M beyond completeness of the metric. From these results we also deduce a Liouville-type theorem for sufficiently slowly growing solutions.
Funder
Ministerio de Ciencia e Innovación
Fundación Séneca
Universidad de Murcia
Publisher
Springer Science and Business Media LLC
Reference9 articles.
1. Bianchini, B., Mari, L., Rigoli, M.: On some aspects of oscillation theory and geometry. Mem. AMS 225, 1056 (2013)
2. Bisterzo, A., Farina, A., Pigola, S.: $$L^p_{{\rm loc}}$$ positivity preservation and Liouville-type theorems, available at arXiv:2304.00745
3. Bisterzo, A., Marini, L.: The $$L^\infty $$-positivity preserving property and stochastic completeness. Potential Anal. (2022). https://doi.org/10.1007/s11118-022-10041-w
4. Colombo, G., Mari, L., Rigoli, M.: Einstein-type structures, Besse’s conjecture, and a uniqueness result for a $$\varphi $$-CPE metric in its conformal class. J. Geom. Anal. 32(11), Paper No. 267 (2022)
5. D’Ambrosio, L., Mitidieri, E.: Quasilinear elliptic equations with critical potentials. Adv. Nonlinear Anal. 6(2), 147–164 (2017)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献