$$L^p_{loc}$$ Positivity Preservation and Liouville-Type Theorems

Author:

Bisterzo Andrea,Farina Alberto,Pigola Stefano

Abstract

AbstractOn a complete Riemannian manifold (Mg), we consider $$L^{p}_{loc}$$ L loc p distributional solutions of the differential inequality $$-\Delta u + \lambda u \ge 0$$ - Δ u + λ u 0 with $$\lambda >0$$ λ > 0 a locally bounded function that may decay to 0 at infinity. Under suitable growth conditions on the $$L^{p}$$ L p norm of u over geodesic balls, we obtain that any such solution must be nonnegative. This is a kind of generalized $$L^{p}$$ L p -preservation property that can be read as a Liouville-type property for nonnegative subsolutiuons of the equation $$\Delta u \ge \lambda u$$ Δ u λ u . An application of the analytic results to $$L^{p}$$ L p growth estimates of the extrinsic distance of complete minimal submanifolds is also given.

Funder

Università degli Studi di Roma La Sapienza

Publisher

Springer Science and Business Media LLC

Reference12 articles.

1. Braverman, M., Milatovic, O., Shubin, M.: Essential self-adjointness of Schrödinger-type operators on manifolds. Russ. Math. Surv. 57(4), 641 (2002)

2. Pigola, S., Veronelli, G.: $${L}^p$$ positivity preserving and a conjecture by M. Braverman, O. Milatovic and M. Shubin. arXiv preprint arXiv:2105.14847, (2021)

3. Pigola, S., Valtorta, D., Veronelli, G.: Approximation, regularity and positivity preservation on Riemannian manifolds. arXiv preprint arXiv:2301.05159, (2023)

4. Güneysu, B., Pigola, S., Stollmann, P., Veronelli, G.: A new notion of subharmonicity on locally smoothing spaces, and a conjecture by Braverman, Milatovic, Shubin. arXiv preprint arXiv:2302.09423, (2023)

5. Bisterzo, A., Marini, L.: The $${L}^{\infty }$$-positivity Preserving Property and Stochastic Completeness. Potential. Anal. 59, 2017–2034 (2023)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. L p positivity preservation and self-adjointness of Schrödinger operators on incomplete Riemannian manifolds;Proceedings of the Royal Society of Edinburgh: Section A Mathematics;2024-05-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3