1. Barth, W.P., Hulek, K., Peters, C.A.M., Van de Ven, A.: Compact Complex Surfaces, 2nd edn, vol. 4. Ergebnisse der Mathematik und ihrer Grenzgebiete. A Series of Modern Surveys in Mathematics. Springer, Berlin (2004)
2. Bedford, E., Taylor, B.A.: The Dirichlet problem for the complex Monge–Ampère operator. Invent. Math. 37, 1–44 (1976)
3. Bedford, E., Taylor, B.A.: A new capacity for plurisubharmonic functions. Acta Math. 149, 1–40 (1982)
4. Berman, R.: From Monge–Ampère equations to envelopes and geodesic rays in the zero temperature limit. Preprint
arXiv: 1307.3008
(2013)
5. Berman, R.: K-polystability of Q-Fano varieties admitting Kähler–Einstein metrics. Invent. Math. 203(3), 1–53 (2016)