Abstract
AbstractThe John–Nirenberg spaces $$JN_p$$
J
N
p
are generalizations of the space of bounded mean oscillation BMO with $$JN_\infty =BMO$$
J
N
∞
=
B
M
O
. Their vanishing subspaces $$VJN_p$$
V
J
N
p
and $$CJN_p$$
C
J
N
p
are defined in similar ways as VMO and CMO, which are subspaces of BMO. As our main result, we prove that $$VJN_p$$
V
J
N
p
and $$CJN_p$$
C
J
N
p
coincide by showing that certain Morrey type integrals of $$JN_p$$
J
N
p
functions tend to zero for small and large cubes. We also show that $$JN_{p,q}(\mathbb {R}^n) =L^p(\mathbb {R}^n) / \mathbb {R}$$
J
N
p
,
q
(
R
n
)
=
L
p
(
R
n
)
/
R
, if $$p = q$$
p
=
q
.
Publisher
Springer Science and Business Media LLC
Reference22 articles.
1. Aalto, D., Berkovits, L., Kansanen, O.E., Yue, H.: John–Nirenberg lemmas for a doubling measure. Studia Math. 204(1), 21–37 (2011)
2. Brudnyi, A., Brudnyi, Y.: On the Banach structure of multivariate BV spaces. Diss. Math. 548, 1–52 (2020)
3. Coifman, R.R., Weiss, G.: Extensions of Hardy spaces and their use in analysis. Bull. Am. Math. Soc. 83, 569–645 (1977)
4. Dafni, G., Hytönen, T., Korte, R., Yue, H.: The space $$JN_p$$: nontriviality and duality. J. Funct. Anal. 275(3), 577–603 (2018)
5. Domínguez, Ó., Milman, M.: Sparse Brudnyi and John–Nirenberg spaces. C. R. Math. Acad. Sci. Paris. 359, 1059–1069 (2021)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献