Author:
Myyryläinen Kim,Yang Dachun
Abstract
AbstractWe introduce a parabolic version of the so-called John–Nirenberg space that is a generalization of functions of parabolic bounded mean oscillation. Parabolic John–Nirenberg inequalities, which give weak type estimates for the oscillation of a function, are shown in the setting of the parabolic geometry with a time lag. Our arguments are based on a parabolic Calderón–Zygmund decomposition and a good lambda estimate. Chaining arguments are applied to change the time lag in the parabolic John–Nirenberg inequality.
Publisher
Springer Science and Business Media LLC
Reference24 articles.
1. Aimar, H.: Elliptic and parabolic BMO and Harnack’s inequality. Trans. Am. Math. Soc. 306(1), 265–276 (1988)
2. Berkovits, L.: Parabolic John–Nirenberg spaces. J. Funct. Spaces Appl. 2012, 901917 (2012)
3. Dafni, G., Hytönen, T., Korte, R., Yue, H.: The space $$JN_p$$: nontriviality and duality. J. Funct. Anal. 275(3), 577–603 (2018)
4. Domínguez, Ó., Milman, M.: Sparse Brudnyi and John–Nirenberg spaces. C. R. Math. Acad. Sci. Paris 359, 1059–1069 (2021)
5. Fabes, E.B., Garofalo, N.: Parabolic B.M.O. and Harnack’s inequality. Proc. Am. Math. Soc. 95(1), 63–69 (1985)