Abstract
AbstractIn this paper, we deal with the following class of fractional (p, q)-Laplacian Kirchhoff type problem: $$\begin{aligned} \left\{ \begin{array}{ll} \left( 1+[u]_{s,p}^{p}\right) (-\Delta )_{p}^{s}u+ \left( 1+[u]^{q}_{s, q}\right) (-\Delta )_{q}^{s}u + V(\varepsilon x) (|u|^{p-2}u + |u|^{q-2}u)= f(u) &{} \text{ in } \mathbb {R}^{N}, \\ u\in W^{s, p}(\mathbb {R}^{N})\cap W^{s,q}(\mathbb {R}^{N}), \quad u>0 \text{ in } \mathbb {R}^{N}, \end{array} \right. \end{aligned}$$
1
+
[
u
]
s
,
p
p
(
-
Δ
)
p
s
u
+
1
+
[
u
]
s
,
q
q
(
-
Δ
)
q
s
u
+
V
(
ε
x
)
(
|
u
|
p
-
2
u
+
|
u
|
q
-
2
u
)
=
f
(
u
)
in
R
N
,
u
∈
W
s
,
p
(
R
N
)
∩
W
s
,
q
(
R
N
)
,
u
>
0
in
R
N
,
where $$\varepsilon >0$$
ε
>
0
, $$s\in (0, 1)$$
s
∈
(
0
,
1
)
, $$1<p<q<\frac{N}{s}<2q$$
1
<
p
<
q
<
N
s
<
2
q
, $$(-\Delta )_{t}^{s}$$
(
-
Δ
)
t
s
, with $$t\in \{p, q\}$$
t
∈
{
p
,
q
}
, is the fractional t-Laplacian operator, $$V:\mathbb {R}^{N}\rightarrow \mathbb {R}$$
V
:
R
N
→
R
is a positive continuous potential such that $$\inf _{\partial \Lambda }V>\inf _{\Lambda } V$$
inf
∂
Λ
V
>
inf
Λ
V
for some bounded open set $$\Lambda \subset \mathbb {R}^{N}$$
Λ
⊂
R
N
, and $$f:\mathbb {R}\rightarrow \mathbb {R}$$
f
:
R
→
R
is a superlinear continuous nonlinearity with subcritical growth at infinity. By combining the method of Nehari manifold, a penalization technique, and the Lusternik–Schnirelman category theory, we study the multiplicity and concentration properties of solutions for the above problem when $$\varepsilon \rightarrow 0$$
ε
→
0
.
Publisher
Springer Science and Business Media LLC
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献