Abstract
AbstractGiven an n-dimensional Riemannian sphere conformal to the round one and $$\delta $$
δ
-pinched, we show that it does not contain any closed stable minimal submanifold of dimension $$2\le k\le n-\delta ^{-1}$$
2
≤
k
≤
n
-
δ
-
1
.
Funder
H2020 European Research Council
Publisher
Springer Science and Business Media LLC
Reference22 articles.
1. Ambrozio, L., Carlotto, A., Sharp, B.: Comparing the Morse index and the first Betti number of minimal hypersurfaces. J. Differ. Geom. 108(3), 379–410 (2018)
2. Aminov, Y.: The instability of a minimal surface in an n-dimensional Riemannian space of positive curvature. Math. USSR Sb. 29(3), 359–375 (1976)
3. Besse, A.: Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 10. Springer, Berlin (1987)
4. Brendle, S., Schoen, R.: Manifolds with 1/4-pinched curvature are space forms. J. Am. Math. Soc. 22(1), 287–307 (2009)
5. Colding, T.H., Minicozzi II, W.P.: A course in minimal surfaces, Graduate Studies in Mathematics, vol. 121. American Mathematical Society, Providence (2011)