Author:
Huang Qingzhong,Li Ai-Jun
Funder
National Natural Science Foundation of China
Natural Science Foundation of Zhejiang Province
Publisher
Springer Science and Business Media LLC
Reference27 articles.
1. Artstein-Avidan, S., Klartag, B., Milman, V.: The Santaló point of a function, and a functional form of the Santaló inequality. Mathematika 51, 33–48 (2004)
2. Artstein-Avidan, S., Sadovsky, S., Wyczesany, K.: Optimal measure transportation with respect to non-traditional costs. Calc. Var. Partial Differ. Equ. 62, 39 (2023)
3. Bianchi, G., Kelly, M.: A Fourier analytic proof of the Blaschke–Santaló inequality. Proc. Am. Math. Soc. 143, 4901–4912 (2015)
4. Blaschke, W.: Über affine Geometrie VII: Neue Extremeingenschaften von Ellipse und Ellipsoid. Ber. Verh. Sächs. Akad. Wiss. Math. Phys. Kl. 69, 412–420 (1917)
5. Bourgain, J., Meyer, M., Milman, V., Pajor, A.: On a geometric inequality (J. Lindenstrauss and V. Milman, eds.), Lecture Notes in Math. Geom. Aspects Funct. Anal. 1317, 271–282 (1988)