Functional Inequalities on Symmetric Spaces of Noncompact Type and Applications

Author:

Kassymov Aidyn,Kumar VishveshORCID,Ruzhansky Michael

Abstract

AbstractThe aim of this paper is to begin a systematic study of functional inequalities on symmetric spaces of noncompact type of higher rank. Our first main goal of this study is to establish the Stein–Weiss inequality, also known as a weighted Hardy–Littlewood–Sobolev inequality, for the Riesz potential on symmetric spaces of noncompact type. This is achieved by performing delicate estimates of ground spherical function with the use of polyhedral distance on symmetric spaces and by combining the integral Hardy inequality developed by Ruzhansky and Verma with the sharp Bessel-Green-Riesz kernel estimates on symmetric spaces of noncompact type obtained by Anker and Ji. As a consequence of the Stein–Weiss inequality, we deduce Hardy–Sobolev, Hardy–Littlewood–Sobolev, Gagliardo–Nirenberg and Caffarelli–Kohn–Nirenberg inequalities on symmetric spaces of noncompact type. The second main purpose of this paper is to show the applications of aforementioned inequalities for studying nonlinear PDEs on symmetric spaces. Specifically, we show that the Gagliardo-Nirenberg inequality can be used to establish small data global existence results for the semilinear wave equations with damping and mass terms for the Laplace–Beltrami operator on symmetric spaces.

Funder

FWO, Belgium

Universiteit Gent

Engineering and Physical Sciences Research Council

Ministry of Education and Science of the Republic of Kazakhstan

Publisher

Springer Science and Business Media LLC

Reference73 articles.

1. Anker, J.-Ph., Zhang, H.-W.: Wave equation on general noncompact symmetric spaces (to appear in) Am. J. Math. (2022). arXiv:2010.08467

2. Anker, J.-Ph.: Sharp estimates for some functions of the Laplacian on noncompact symmetric spaces. Duke Math. J. 65(2), 257–297 (1992)

3. Anker, J.-Ph., Ji, L.: Heat kernel and Green function estimates on noncompact symmetric spaces. Geom. Funct. Anal. 9, 1035–1091 (1999)

4. Anker, J.-Ph., Pierfelice, V., Vallarino, M.: The wave equation on hyperbolic spaces. J. Differ. Equ. 252(10), 5613–5661 (2012)

5. Anker, J.-Ph., Pierfelice, V.: Wave and Klein-Gordon equations on hyperbolic spaces. Anal. PDE 7(4), 953–995 (2014)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3