Semilinear damped wave equations on the Heisenberg group with initial data from Sobolev spaces of negative order

Author:

Dasgupta Aparajita,Kumar Vishvesh,Mondal Shyam SwarupORCID,Ruzhansky Michael

Abstract

AbstractIn this paper, we focus on studying the Cauchy problem for semilinear damped wave equations involving the sub-Laplacian $$\mathcal {L}$$ L on the Heisenberg group $$\mathbb {H}^n$$ H n with power type nonlinearity $$|u|^p$$ | u | p and initial data taken from Sobolev spaces of negative order homogeneous Sobolev space $$\dot{H}^{-\gamma }_{\mathcal {L}}(\mathbb {H}^n), \gamma >0$$ H ˙ L - γ ( H n ) , γ > 0 , on $$\mathbb {H}^n$$ H n . In particular, in the framework of Sobolev spaces of negative order, we prove that the critical exponent is the exponent $$p_{\text {crit}}(Q, \gamma )=1+\frac{4}{Q+2\gamma },$$ p crit ( Q , γ ) = 1 + 4 Q + 2 γ , for $$\gamma \in (0, \frac{Q}{2})$$ γ ( 0 , Q 2 ) , where $$Q:=2n+2$$ Q : = 2 n + 2 is the homogeneous dimension of $$\mathbb {H}^n$$ H n . More precisely, we establish A global-in-time existence of small data Sobolev solutions of lower regularity for $$p>p_{\text {crit}}(Q, \gamma )$$ p > p crit ( Q , γ ) in the energy evolution space; A finite time blow-up of weak solutions for $$1<p<p_{\text {crit}}(Q, \gamma )$$ 1 < p < p crit ( Q , γ ) under certain conditions on the initial data by using the test function method. Furthermore, to precisely characterize the blow-up time, we derive sharp upper bound and lower bound estimates for the lifespan in the subcritical case.

Funder

SERB

FWO Odysseus 1 grant

FWO Senior Research Grant

EPSRC grants

the Methusalem program of the Ghent University Special Research Fund

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3