Abstract
AbstractIn this paper, we focus on studying the Cauchy problem for semilinear damped wave equations involving the sub-Laplacian $$\mathcal {L}$$
L
on the Heisenberg group $$\mathbb {H}^n$$
H
n
with power type nonlinearity $$|u|^p$$
|
u
|
p
and initial data taken from Sobolev spaces of negative order homogeneous Sobolev space $$\dot{H}^{-\gamma }_{\mathcal {L}}(\mathbb {H}^n), \gamma >0$$
H
˙
L
-
γ
(
H
n
)
,
γ
>
0
, on $$\mathbb {H}^n$$
H
n
. In particular, in the framework of Sobolev spaces of negative order, we prove that the critical exponent is the exponent $$p_{\text {crit}}(Q, \gamma )=1+\frac{4}{Q+2\gamma },$$
p
crit
(
Q
,
γ
)
=
1
+
4
Q
+
2
γ
,
for $$\gamma \in (0, \frac{Q}{2})$$
γ
∈
(
0
,
Q
2
)
, where $$Q:=2n+2$$
Q
:
=
2
n
+
2
is the homogeneous dimension of $$\mathbb {H}^n$$
H
n
. More precisely, we establish
A global-in-time existence of small data Sobolev solutions of lower regularity for $$p>p_{\text {crit}}(Q, \gamma )$$
p
>
p
crit
(
Q
,
γ
)
in the energy evolution space;
A finite time blow-up of weak solutions for $$1<p<p_{\text {crit}}(Q, \gamma )$$
1
<
p
<
p
crit
(
Q
,
γ
)
under certain conditions on the initial data by using the test function method.
Furthermore, to precisely characterize the blow-up time, we derive sharp upper bound and lower bound estimates for the lifespan in the subcritical case.
Funder
SERB
FWO Odysseus 1 grant
FWO Senior Research Grant
EPSRC grants
the Methusalem program of the Ghent University Special Research Fund
Publisher
Springer Science and Business Media LLC
Reference40 articles.
1. J.-Ph. Anker and H.-W. Zhang, Wave equation on general noncompact symmetric spaces, (to appear in) Amer. J. Math, (2024). https://doi.org/10.48550/arXiv.2010.08467.
2. J.-Ph. Anker and V. Pierfelice, Wave and Klein-Gordon equations on hyperbolic spaces, Anal. PDE, 7(4), 953-995, (2014).
3. A. K. Bhardwaj, V. Kumar and S. S. Mondal, Estimates for the nonlinear viscoelastic damped wave equation on compact Lie groups, Proc. Roy. Soc. Edinburgh Sect. A. (2023). https://doi.org/10.1017/prm.2023.38
4. D. Cardona, V. Kumar and M. Ruzhansky, $$L^p$$-$$L^q$$ boundedness of pseudo-differential operators on graded Lie groups, arxiv preprint (2023), https://doi.org/10.48550/arXiv.2307.16094
5. W. Chen and M. Reissig, On the critical exponent and sharp lifespan estimates for semilinear damped wave equations with data from Sobolev spaces of negative order, J. Evol. Equ. 23, 13 (2023).