Abstract
AbstractIn this paper, we investigate the holonomy group of n-dimensional projective Finsler metrics of constant curvature. We establish that in the spherically symmetric case, the holonomy group is maximal, and for a simply connected manifold it is isomorphic to $${\mathcal {D}}i\!f \hspace{-3pt} f_o({\mathbb {S}}^{n-1})$$
D
i
f
f
o
(
S
n
-
1
)
, the connected component of the identity of the group of smooth diffeomorphism on the $${n-1}$$
n
-
1
-dimensional sphere. In particular, the holonomy group of the n-dimensional standard Funk metric and the Bryant–Shen metrics are maximal and isomorphic to $${\mathcal {D}}i\!f \hspace{-3pt} f_o({\mathbb {S}}^{n-1})$$
D
i
f
f
o
(
S
n
-
1
)
. These results are the firsts describing explicitly the holonomy group of n-dimensional Finsler manifolds in the non-Berwaldian (that is when the canonical connection is non-linear) case.
Publisher
Springer Science and Business Media LLC
Reference19 articles.
1. Borel, A., Lichnerowicz, A.: Groupes d’holonomie des variétés riemanniennes. C. R. Acad. Sci. Paris 234, 1835–1837 (1952)
2. Bryant, R.L., Finsler structures on the $$2$$-sphere satisfying $$K=1$$. In Finsler geometry (Seattle, WA,: vol. 196 of Contemp. Math. Amer. Math. Soc. Providence, RI 1996, 27–41 (1995)
3. Bryant, R.L.: Projectively flat Finsler $$2$$-spheres of constant curvature. Selecta Math. (N.S.) 2, 161–203 (1997)
4. Chern, S.-S., Shen, Z.: Riemann-Finsler geometry, vol. 6 of Nankai Tracts in Mathematics. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, (2005)
5. Funk, P.: Über Geometrien, bei denen die Geraden die Kürzesten sind. Math. Ann. 101(1), 226–237 (1929)