Comprehensive review of retinal blood vessel segmentation and classification techniques: intelligent solutions for green computing in medical images, current challenges, open issues, and knowledge gaps in fundus medical images
Author:
Publisher
Springer Science and Business Media LLC
Subject
Urology
Link
https://link.springer.com/content/pdf/10.1007/s13721-021-00294-7.pdf
Reference171 articles.
1. Abd Ghani MK et al (2018) Decision-level fusion scheme for nasopharyngeal carcinoma identification using machine learning techniques. Neural Comput Appl 32(3):625–638
2. Abdallah MB, Malek J, Krissian K and Tourki R (2011) An automated vessel segmentation of retinal images using multiscale vesselness. . In eighth international multi-conference on systems, signals and devices IEEE (1–6)
3. Abdulhay E et al (2018) Computer aided solution for automatic segmenting and measurements of blood leucocytes using static microscope images. J Med Syst 42(4):58
4. Adel M, Rasigni M, Gaidon T, Fossati C and Bourennane S (2009) Statistical-based linear vessel structure detection in medical images. In 2009 16th IEEE international conference on image processing (ICIP) (649–652)
5. Akhavan RAFK (2014) A novel retinal blood vessel segmentation algorithm using fuzzy segmentation. Int J Elect Comp Eng 4(4):561
Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A three-stage novel framework for efficient and automatic glaucoma classification from retinal fundus images;Multimedia Tools and Applications;2024-06-14
2. Pre-processing Techniques: A Review for Retinal Image Segmentation;2024 2nd International Conference on Electrical Engineering and Automatic Control (ICEEAC);2024-05-12
3. Establishment of an automatic diagnosis system for corneal endothelium diseases using artificial intelligence;Journal of Big Data;2024-05-08
4. VGA‐Net: Vessel graph based attentional U‐Net for retinal vessel segmentation;IET Image Processing;2024-04-12
5. An Intelligent Optimized Deep Network for Retinopathy Diabetes Segmentation;Wireless Personal Communications;2024-04
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3