1. Baid U, Ghodasara S, Mohan S, Bilello M, Calabrese E, Colak E, Farahani K, Kalpathy-Cramer J, Kitamura FC, Pati S, Prevedello LM, Rudie JD, Sako C, Shinohara RT, Bergquist T, Chai R, Eddy J, Elliott J, Reade W, Schaffter T, Yu T, Zheng J, Moawad AW, Coelho LO, McDonnell O, Miller E, Moron FE, Oswood MC, Shih RY, Siakallis L, Bronstein Y, Mason JR, Miller AF, Choudhary G, Agarwal A, Besada CH, Derakhshan JJ, Diogo MC, Do-Dai DD, Farage L, Go JL, Hadi M, Hill VB, Iv M, Joyner D, Lincoln C, Lotan E, Miyakoshi A, Sanchez-Montano M, Nath J, Nguyen XV, Nicolas-Jilwan M, Jimenez JO, Ozturk K, Petrovic BD, Shah C, Shah LM, Sharma M, Simsek O, Singh AK, Soman S, Statsevych V, Weinberg BD, Young RJ, Ikuta I, Agarwal AK, Cambron SC, Silbergleit R, Dusoi A, Postma AA, Letourneau-Guillon L, Perez-Carrillo GJG, Saha A, Soni N, Zaharchuk G, Zohrabian VM, Chen Y, Cekic MM, Rahman A, Small JE, Sethi V, Davatzikos C, Mongan J, Hess C, Cha S, Villanueva-Meyer J, Freymann JB, Kirby JS, Wiestler B, Crivellaro P, Colen RR, Kotrotsou A, Marcus D, Milchenko M, Nazeri A, Fathallah-Shaykh H, Wiest R, Jakab A, Weber MA, Mahajan A, Menze B, Flanders AE, Bakas S (2021) The rsna-asnr-miccai brats 2021 benchmark on brain tumor segmentation and radiogenomic classification
2. Cai Y, Wang Y (2022) MA-UNet: an improved version of UNet based on multi-scale and attention mechanism for medical image segmentation. In: Third international conference on electronics and communication
3. network and computer technology (ECNCT 2021). SPIE, vol. 12167, pp 205-211
4. Cao H, Wang Y, Chen J, Jiang D, Zhang X, Tian Q, Wang M (2022) SWIN-UNet: UNet-like pure transformer for medical image segmentation. In: European conference on computer vision. Springer, pp 205–218
5. Chang J, Zhang X, Ye M, Huang D, Wang P, Yao C (2018) Brain tumor segmentation based on 3D UNet with multi-class focal loss. In: 2018 11th international congress on image and signal processing, BioMedical Engineering and Informatics (CISP-BMEI). IEEE, pp 1–5