Abstract
AbstractWe prove the existence of multiple solutions for a two-point boundary value problem associated with Hamiltonian systems on a cylinder. Unlike the periodic problem, where the Poincaré–Birkhoff Theorem plays a central role, no twist condition is needed here.
Funder
Università degli Studi di Trieste
Publisher
Springer Science and Business Media LLC
Reference12 articles.
1. Birkhoff, G.D.: Une généralisation à $$n$$ dimensions du dernier théorème de géométrie de Poincaré, C. R. Acad. Sci., Paris 192, 196–198 (1931)
2. Castro, A.: Periodic solutions of the forced pendulum equation, Differential Equations (Proc. Eighth Fall Conf., Oklahoma State Univ., Stillwater, 1979), pp. 149–160, Academic Press, New York (1980)
3. Dunford, N., Schwartz, J.T.: Linear Operators. Part I, reprint of the: original, p. 1988. Wiley and Sons Inc, New York (1958)
4. Fonda, A., Ureña, A.J.: A higher dimensional Poincaré–Birkhoff theorem for Hamiltonian flows, Ann. Inst. H. Poincaré, Anal. Non Linéaire 34, 679–698 (2017)
5. Golé, C.: Symplectic Twist Maps. Global Variational Techniques, Adv. Ser. Nonlinear Dynam., Vol. 18, World Scientific Publisher, River Edge (2001)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献