Author:
Fonda Alessandro,Mamo Natnael Gezahegn,Obersnel Franco,Sfecci Andrea
Abstract
AbstractWe prove some multiplicity results for Neumann-type boundary value problems associated with a Hamiltonian system. Such a system can be seen as the weak coupling of two systems, the first of which has some periodicity properties in the Hamiltonian function, the second one presenting the existence of a well-ordered pair of lower/upper solutions.
Funder
Università degli Studi di Trieste
Publisher
Springer Science and Business Media LLC
Reference23 articles.
1. Boscaggin, A., Fonda, A., Garrione, M.: An infinite-dimensional version of the Poincaré–Birkhoff theorem on the Hilbert cube. Ann. Sc. Norm. Super. Pisa Cl. Sci. 20, 751–770 (2020)
2. Castro, A.: Periodic solutions of the forced pendulum equation. In: Ahmad, S., Keener, M., Lazer, A.C. (eds.) Differential Equations, pp. 149–160. Academic Press, New York (1980)
3. De Coster, C., Habets, P.: Two-Point Boundary Value Problems, Lower and Upper Solutions. Elsevier, Amsterdam (2006)
4. Feltrin, G., Zanolin, F.: Bound sets for a class of $$\phi $$-Laplacian operators. J. Differ. Equ. 297, 508–535 (2021)
5. Filippov, A.F.: Differential Equations with Discontinuous Righthand Sides. Kluwer, Dordrecht (1988)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献