Abstract
AbstractTunnel boring machine (TBM) performance prediction is often a critical issue in the early stage of a tunnelling project, mainly due to the unpredictable nature of some important factors affecting the machine performance. In this regard, deterministic approaches are normally employed, providing results in terms of average values expected for the TBM performance. Stochastic approaches would offer improvement over deterministic methods, taking into account the parameter variability; however, their use is limited, since the level of information required is often not available. In this study, the data provided by the excavation of the Maddalena exploratory tunnel were used to predict the net and overall TBM performance for a 2.96 km section of the Mont Cenis base tunnel by using a stochastic approach. The preliminary design of the TBM cutterhead was carried out. A prediction model based on field penetration index, machine operating level and utilization factor was adopted. The variability of the parameters involved was analysed. A procedure to take into account the correlation between the input variables was described. The probability of occurrence of the outcomes was evaluated, and the total excavation time expected for the tunnel section analysed was calculated.
Publisher
Springer Science and Business Media LLC
Subject
Geology,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献