4D Synchrotron X-ray Imaging of Grain Scale Deformation Mechanisms in a Seismogenic Gas Reservoir Sandstone During Axial Compaction

Author:

F. Van Stappen J.ORCID,McBeck J. A.ORCID,Cordonnier B.ORCID,Pijnenburg R. P. J.ORCID,Renard F.ORCID,Spiers C. J.ORCID,Hangx S. J. T.ORCID

Abstract

AbstractUnderstanding the grain-scale processes leading to reservoir compaction during hydrocarbons production is crucial for enabling physics-based predictions of induced surface subsidence and seismicity hazards. However, typical laboratory experiments only allow for pre- and post-experimental microstructural investigation of deformation mechanisms. Using high-resolution time-lapse X-ray micro-tomography imaging (4D µCT) during triaxial deformation, the controlling grain-scale processes can be visualized through time and space at realistic subsurface conditions. We deformed a sample of Slochteren sandstone, the reservoir rock from the seismogenic Groningen gas field in the Netherlands. The sample was deformed beyond its yield point (axial strain > 15%) in triaxial compression at reservoir P–T-stress conditions (100 °C, 10 MPa pore pressure, 40 MPa effective confining pressure). A total of 50 three-dimensional µCT scans were obtained during deformation, at a spatial resolution of 6.5 µm. Time lapse imaging plus digital volume correlation (DVC) enabled identification of the grain-scale deformation mechanisms operating throughout the experiment, for the first time, both at small, reservoir-relevant strains (< 1%), and in the approach to brittle failure at strains > 10%. During small-strain deformation, the sample showed compaction through grain rearrangement accommodated by inter-granular slip and normal displacements across grain boundaries, in particular, by closure of open grain boundaries or compaction of inter-granular clay films. At intermediate and large strains (> 4%), grain fracturing and pore collapse were observed, leading to sample-scale brittle failure. These observations provide key input for developing microphysical models describing compaction of the Groningen and other producing (gas) reservoirs.

Funder

nam

fonds wetenschappelijk onderzoek

norges forskningsråd

Publisher

Springer Science and Business Media LLC

Subject

Geology,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3