Affiliation:
1. State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan 232001, China
Abstract
To study the dynamic crack evolution process of loaded coal from the perspective of fractals, we carried out in situ industrial CT scanning tests of loaded coal under different confining pressures, visualizing loaded coal fracturing. Combined with fractal theory, the temporal and spatial evolution law of coal cracks is described quantitatively. The results provide two findings: (1) from the perspective of two-dimensional images and three-dimensional space, the evolution characteristics of cracks in coal under different confining pressures were basically the same in each loading stage. During the loading stages, the cracks exhibited a change rule of a slow reduction, initiation/development, rapid increase, expansion, and penetration. (2) The fractal dimension of coal was calculated by introducing fractal theory, and its change law was in good agreement with the dynamic changes of the cracks, which can explain the influence of the confining pressure on the loaded coal. The fractal dimension showed three stages: a slight decrease, a stable increase, and then a significant increase. The larger the confining pressure, the more obvious the limiting effect. Thus, our approach provides a more accurate method for evaluating the spatial and temporal evolution of cracks in loaded coal. This study can be used to predict the instability failure of loaded coal samples.
Funder
Anhui Province Science and Technology Major special projects
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献