Fluid Flow and Leakage Assessment Through an Unlined/Shotcrete Lined Pressure Tunnel: A Case from Nepal Himalaya

Author:

Panthi Krishna Kanta,Basnet Chhatra Bahadur

Abstract

AbstractThe use of unlined/shotcrete lined pressure tunnels and shafts are cost-effective solutions for a hydropower project and are being implemented worldwide. To implement this concept, the ground conditions at the area of concern should be favorable regarding minimum principal stress magnitude, which should be higher than hydrostatic water head acting on the tunnel periphery. In addition, the rock mass should be relatively unjointed or joints in the rock mass should be relatively tight. Among the most important issues in the design of unlined/shotcrete lined pressure tunnels is the extent of hydraulic jacking and water leakage out of the tunnel during operation. This manuscript first presents fluid flow and potential hydraulic jacking assessment of two selected locations of the headrace tunnel of Upper Tamakoshi Hydroelectric Project (UTHP) in Nepal using the UDEC. It is noted here that the 7960 m long headrace tunnel will experience a hydrostatic water head that will vary from 2.9 to 11.5 bars (0.29–1.15 MPa). The headrace tunnel is supported by sprayed concrete (shotcrete) in combination with systematic rock bolts in the tunnel walls and crown. The invert of the tunnel and few hundred meters downstream end (at surge shaft area) of the headrace tunnel is being concrete lined after the completion of all other works. The qualitative fluid flow assessment carried out using UDEC indicated considerable pressure built-up in the joint systems suggesting potential hydraulic jacking. This was especially the case at the downstream segment (downstream from chainage 7100 m) of the headrace tunnel. The manuscript further presents the quantitative results of water leakage estimation from the headrace tunnel carried out using Panthi (Panthi KK (2006) Analysis of engineering geological uncertainties related to tunnelling in Himalayan rock mass conditions. PhD Thesis, NTNU, Trondheim, Norway;Panthi, Note on estimating specific leakage using Panthi’s approach, NTNU, Trondheim, 2010;) approach. The leakage assessment carried out indicated an average specific leakage of about 2.5 l/min/m tunnel, which may result in over 210 l/s leakage from the headrace tunnel. The evaluation also indicated that the outer reach (860 m downstream segment) of the headrace tunnel after chainage 7100 m seems extremely vulnerable and over 80 l/s water leakage may occur only from this headrace tunnel segment during operation of the hydropower plant.

Funder

Norges Teknisk-Naturvitenskapelige Universitet

NTNU Norwegian University of Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Geology,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3