Triaxial Deformation of the Goldwyer Gas Shale at In Situ Stress Conditions—Part II: Viscoelastic Creep/Relaxation and Frictional Failure

Author:

Mandal Partha PratimORCID,Sarout Joel,Rezaee Reza

Abstract

AbstractTo understand the geomechanical implications of long-term creep (time-dependent deformation) response of gas shale, short-duration creep was recorded from laboratory triaxial tests on ten Goldwyer gas shale samples in the onshore Canning Basin at in situ stress conditions under constant differential axial stress. A simple power-law function captures primary creep behaviour involving elastic compliance constant B and time-dependent factor n. Experimental creep data revealed larger axial creep strain in clay and organic-rich rocks, than those dominated by carbonates. Anisotropic nature of creep was observed depending upon the direction of constant axial stress application (perpendicular or parallel to the bedding plane). Upon the application of linear viscoelastic theory on laboratory creep fitting coefficients, differential horizontal stress accumulation over a geological time scale was estimated from the viscoelastic stress relaxation concept. Further, this model was used to derive lithology-dependent least principal stress (Shmin) magnitude at depth for two vertical wells intersecting the Goldwyer gas shale formations. This newly proposed Shmin model was found to have a profound influence on designing hydraulic fracture simulation. Further, pore size distribution and specific surface area value SN2 were derived from low-pressure gas adsorption experiments. These physical properties along with weak mineral components were linked with creep constitutive parameters to understand the physical mechanisms of creep. A strong correlation was noted between SN2 and creep parameters n and B. Finally, an attempt was made to investigate how gas shale composition and failure frictional properties can influence shear fracturing.

Funder

Commonwealth Scientific and Industrial Research Organisation

Publisher

Springer Science and Business Media LLC

Subject

Geology,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3