Artificial Intelligence-based Learning Techniques for Diabetes Prediction: Challenges and Systematic Review
Author:
Publisher
Springer Science and Business Media LLC
Link
https://link.springer.com/content/pdf/10.1007/s42979-020-00337-2.pdf
Reference37 articles.
1. Huang GB, Zhu QY, Siew CK, et al. Extreme learning machine: theory and applications. Neurocomputing. 2006;70:489–501.
2. Al Jarullah AA. Decision tree discovery for the diagnosis of type II diabetes. In: 2011 International conference on innovations in information technology. IEEE; 2011, pp. 303–7.
3. Anderson JP, et al. Reverse engineering and evaluation of prediction models for progression to type 2 diabetes: an application of machine learning using electronic health records. J Diabetes SciTechnol. 2016;10:6–18.
4. Bhargava N, Dayma S, Kumar A, Singh P. An approach for classification using simple CART algorithm in WEKA. In: 2017 11th international conference on intelligent systems and control (ISCO). IEEE; 2017. pp. 212–6.
5. Dagliati A, et al. Machine learning methods to predict diabetes complications. J Diabetes SciTechnol. 2018;12:295–302.
Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Glycated hemoglobin (HbA1c) and biofluid-based diagnosis in diabetes: A comprehensive review;Journal of Electroanalytical Chemistry;2024-06
2. Early Detection of Type-2 Diabetes Mellitus using Machine Learning based Prediction Models;2024 11th International Conference on Computing for Sustainable Global Development (INDIACom);2024-02-28
3. Identifying Diabetes Related-Complications in a Real-World Free-Text Electronic Medical Records in Hebrew Using Natural Language Processing Techniques;Journal of Diabetes Science and Technology;2024-01-30
4. Need for an Artificial Intelligence-based Diabetes Care Management System in India and the United States;Health Services Research and Managerial Epidemiology;2024-01
5. Clinical applications of artificial intelligence in diabetes management: A bibliometric analysis and comprehensive review;Informatics in Medicine Unlocked;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3