Anomaly Detection in COVID-19 Time-Series Data
Author:
Funder
National Science Foundation
CableLabs, Furuno Electric Company, SecureNok, AFRL, and NIST
Google
Publisher
Springer Science and Business Media LLC
Link
https://link.springer.com/content/pdf/10.1007/s42979-021-00658-w.pdf
Reference52 articles.
1. Wenham C, Smith J, Morgan R. COVID-19: the gendered impacts of the outbreak. Lancet. 2020;395(10227):846–8.
2. Jain R, Gupta M, Taneja S, Hemanth DJ. Deep learning based detection and analysis of COVID-19 on chest X-ray images. Appl Intell. 2020;51:1–11.
3. Cortegiani A, Ingoglia G, Ippolito M, Giarratano A, Einav S. A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. J Crit Care. 2020;57:279–83.
4. Mishra T, Wang M, Metwally AA, Bogu GK, Brooks AW, Bahmani A, Alavi A, Celli A, Higgs E, Dagan-Rosenfeld O, et al. Pre-symptomatic detection of COVID-19 from smartwatch data. Nat Biomed Eng. 2020;4:1–13.
5. Karadayi Y, Aydin MN, Öǧrencí AS. Unsupervised anomaly detection in multivariate spatio-temporal data using deep learning: early detection of COVID-19 outbreak in Italy. IEEE Access. 2020;8:164155–77. https://doi.org/10.1109/ACCESS.2020.3022366.
Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Machine learning based damage identification in SiC/SiC composites from acoustic emissions using autoencoders;Composites Part B: Engineering;2024-12
2. Deep autoencoder-based behavioral pattern recognition outperforms standard statistical methods in high-dimensional zebrafish studies;PLOS Computational Biology;2024-09-10
3. Feasibility of anomalous event detection based on Mobile Spatial Statistics: A study of six cases in Japan;International Journal of Disaster Risk Reduction;2024-08
4. Data-Driven Interventions for an Emergency Preparedness System: A National Experience in Australia;Studies in Health Technology and Informatics;2024-01-25
5. Anomaly Detection in Time Series Data Using Reversible Instance Normalized Anomaly Transformer;Sensors;2023-11-19
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3