Question Answering Over Knowledge Base: A Scheme for Integrating Subject and the Identified Relation to Answer Simple Questions

Author:

Buzaaba HappyORCID,Amagasa Toshiyuki

Abstract

AbstractAnswering natural language question over a knowledge base is an important and challenging task with a wide range of application in natural language processing and information retrieval. Several existing knowledge-based question answering systems exploit complex end-to-end neural network approaches that are computationally expensive and take long to execute when training the neural network. More importantly, such an end-to-end approach makes it difficult to examine the process of query processing. In this study, we decompose the question answering problem in a three-step pipeline of entity detection, entity linking, and relation prediction, and solve each component separately. We explore basic neural network and non-neural network methods for entity detection and relation prediction plus a few heuristics for entity linking. We also introduce a method to identify ambiguity in the data and show that ambiguity in the data bounds the performance of the question answering system. The experiment on the SimpleQuestions benchmark data set shows that a combination of basic LSTMs, GRUs, and non-neural network techniques achieve reasonable performance while providing an opportunity to understand the question answering problem structure.

Publisher

Springer Science and Business Media LLC

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3