Interaction of the Sea Breeze with the Urban Area of Rome: WRF Mesoscale and WRF Large-Eddy Simulations Compared to Ground-Based Observations

Author:

Di Bernardino AnnalisaORCID,Mazzarella Vincenzo,Pecci Mattia,Casasanta Giampietro,Cacciani Marco,Ferretti Rossella

Abstract

AbstractThe Weather Research and Forecast (WRF) model is used to simulate atmospheric circulation during the summer season in a coastal region of central Italy, including the city of Rome. The time series of surface air temperature, wind speed, and direction are compared with in situ observations in urban Rome and its rural surroundings. Moreover, the vertical wind profiles are compared to sodar urban measurements. To improve the WRF model’s ability to reproduce the local circulation, and the onset and propagation of the sea breeze, several simulations are carried out modifying the land use and the thermal and physical properties of the surfaces. Based on the results of the correlation coefficient and the RMSE, the heat capacity and albedo are the parameters mostly influencing the daily temperature cycle. Particularly, the temperature in the urban area is reproduced more realistically when the heat capacity is increased. Hence, the best simulations are used to initialize a large-eddy simulation at high spatial resolution to analyze the interaction between the sea breeze and the urban heat island and to investigate the interaction of the sea breeze front with orography and surface roughness. As confirmed by observations collected by in situ weather stations in the surroundings of Rome, the front, entering the city, splits into three branches: (i) a west component in the western flank of the city, closer to the sea; (ii) a north-west component in the northern, inland side, and (iii) a south-west component in the south area of the city.

Funder

Università degli Studi di Roma La Sapienza

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3