High-Resolution WRF Modeling of Wind and Thermal Regimes with LCZ in Almaty, Kazakhstan

Author:

Dedova Tatyana1ORCID,Balakay Larissa1,Zakarin Edige1,Bostanbekov Kairat1ORCID,Abdimanap Galymzhan1

Affiliation:

1. EcoRisk LLP, 42 Aitiyeva Str, Almaty 050026, Kazakhstan

Abstract

This study evaluates the effectiveness of the Weather Research and Forecasting (WRF) model in simulating high-resolution atmospheric conditions for Almaty, Kazakhstan, a city prone to stagnant winter air. While the previously used Bougeault and Lacarrere scheme for parameterizing the planetary boundary layer was applied in high-resolution modeling, the number of vertical levels was increased, and a detailed local climate zones (LCZs) map was included. Ground-based observations from meteorological stations and monitoring stations, remote sensing data, and radiosonde measurements are used to verify the model. Comparison results with ground-based observations show that the WRF model with the LCZ map provides a better representation of the wind and thermal regimes of Almaty compared to the three-class land use map, including in high resolution. A good correspondence of wind direction is demonstrated by comparing the modeling results with pollutant transport plumes recorded by remote sensing data. In addition, a good correlation was found between land surface temperature from satellite data and air temperature simulated by WRF with a resolution of 333 m. A comparison of simulated data and aerological measurements confirmed that downscaling did not have a significant impact on boundary layer calculations. Analysis of turbulent processes showed that the adopted model effectively describes the attenuation and dissipation of turbulent kinetic energy and reflects the typical diurnal variations of meteorological processes in the atmosphere of Almaty in the anticyclonic winter period. The results of high-resolution WRF modeling can form the basis for the development of a hybrid system capable of modeling atmospheric processes at the building level.

Funder

the Committee on Science of the Ministry of Science and Higher Education of the Republic of Kazakhstan

Publisher

MDPI AG

Reference60 articles.

1. Skamarock, W.C., Klemp, J.B., Dudhia, J.B., Gill, D.O., Barker, D.M., Duda, M.G., Huang, X.-Y., Wang, W., and Powers, J.G. (2021). A Description of the Advanced Research WRF Model Version 4.3 (No. NCAR/TN-556+STR). NCAR Tech. Note.

2. Simulation of Air Pollution in Almaty City under Adverse Weather Conditions;Zakarin;Russ. Meteorol. Hydrol.,2021

3. Modeling of the Calm Situations in the Atmosphere of Almaty;Zakarin;Asian J. Atmos. Environ.,2022

4. Effects of Greenery Enhancements for the Resilience to Heat Waves: A Comparison of Analysis Performed through Mesoscale (WRF) and Microscale (Envi-Met) Modeling;Berardi;Sci. Total Environ.,2020

5. An Integrated Multiscale Urban Microclimate Model for the Urban Thermal Environment;Wong;Urban Clim.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3