Large-Scale Synoptic Systems and Fog During the C-FOG Field Experiment

Author:

Dorman Clive E.ORCID,Hoch Sebastian W.,Gultepe Ismail,Wang Qing,Yamaguchi Ryan T.,Fernando H. J. S.,Krishnamurthy Raghavendra

Abstract

AbstractThe goal of this work is to summarize synoptic meteorological conditions during the Coastal Fog (C-FOG) field project that took place onshore and offshore of the Avalon Peninsula, Newfoundland, from 25 August until 8 October 2018. Visibility was measured at three locations at the Ferryland supersite that are about 1 km from each other, and at two additional sites 66 and 76 km to the north. Supporting meteorological measurements included surface winds, air temperature, humidity, pressure, radiation, cloud-base height, and atmospheric thermodynamic profiles from radiosonde soundings. Statistics are presented for surface measurements during fog events including turbulence kinetic energy, net longwave radiation, visibility, and precipitation. Eleven fog events are observed at Ferryland. Each significant fog event is related to a large-scale cyclonic system. The longest fog event is due to interaction of a northern deep low and a tropical cyclone. Fog occurrence is also examined across Atlantic Canada by including Sable Island, Yarmouth, Halifax, and Sydney. It is concluded that at Ferryland, all significant fog events occur under a cyclonic system while at Sable Island all significant fog events occur under both cyclonic and anticyclonic systems. The fog-formation mechanism involves cloud lowering and stratus broadening or only stratus broadening for the cyclonic systems while for the anticyclonic systems it is stratus broadening or radiation. Although widely cited as the main cause of fog in Atlantic Canada, advection fog is not found to be the primary or sole fog type in the events examined.

Funder

Office of Naval Research

Advanced Research Projects Agency - Energy

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3