Effect of the boundary layer low-level jet on fast fog spatial propagation

Author:

Yan Shuqi,Wang HongbinORCID,Liu Xiaohui,Zu Fan,Liu DuanyangORCID

Abstract

Abstract. The spatiotemporal variation of fog reflects the complex interactions among fog, boundary layer thermodynamics and synoptic systems. Previous studies revealed that fog can present a fast spatial propagation feature and attribute it to the boundary layer low-level jet (BLLJ), but the effect of the BLLJ on fog propagation is not quantitatively understood. Here we analyze a large-scale fog event in Jiangsu, China, from 20 to 21 January 2020. Satellite retrievals show that fog propagates from the southeast coastal area to the northwest inland area with a speed of 9.6 m s−1, which is 3 times larger than the ground wind speeds. The ground meteorologies are insufficient to explain the fast fog propagation, which is further investigated by Weather Research and Forecasting model (WRF) simulations. The fast fog propagation could be attributed to the BLLJ occurring between 50 and 500 m, because the wind speeds (10 m s−1) and directions (southeast) of the BLLJ core are consistent with fog propagation. Through sensitive experiments and process analysis, three possible mechanisms of the BLLJ are revealed: (1) the abundant oceanic moisture is transported inland, increasing the humidity of the boundary layer and promoting condensation; (2) the oceanic warm air is transported inland, enhancing the inversion layer and favoring moisture accumulation; and (3) the moisture advection probably promotes low-stratus formation, and later it subsides to become ground fog by turbulent mixing of fog droplets. The fog propagation speed would decrease notably by 6.4 m s−1 (66 %) in the model if the BLLJ-related moisture and warm advections were turned off.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3