Abstract
AbstractThis paper develops approximate message passing algorithms to optimize multi-species spherical spin glasses. We first show how to efficiently achieve the algorithmic threshold energy identified in our companion work (Huang and Sellke in arXiv preprint, 2023. arXiv:2303.12172), thus confirming that the Lipschitz hardness result proved therein is tight. Next we give two generalized algorithms which produce multiple outputs and show all of them are approximate critical points. Namely, in an r-species model we construct $$2^r$$
2
r
approximate critical points when the external field is stronger than a “topological trivialization" phase boundary, and exponentially many such points in the complementary regime. We also compute the local behavior of the Hamiltonian around each. These extensions are relevant for another companion work (Huang and Sellke in arXiv preprint, 2023. arXiv:2308.09677) on topological trivialization of the landscape.
Funder
National Science Foundation
Simons Foundation
Stanford University
Publisher
Springer Science and Business Media LLC
Reference26 articles.
1. Auffinger, A., Ben Arous, G., Černý, J.: Random matrices and complexity of spin glasses. Commun. Pure Appl. Math. 66(2), 165–201 (2013)
2. Auffinger, A., Chen, W.-K.: Free energy and complexity of spherical bipartite models. J. Stat. Phys. 157(1), 40–59 (2014)
3. El Alaoui, A., Montanari, A.: Algorithmic thresholds in mean field spin glasses. arXiv preprint (2020). arXiv:2009.11481
4. El Alaoui, A., Montanari, A., Sellke, M.: Optimization of mean-field spin glasses. Ann. Probab. 49(6), 2922–2960 (2021)
5. El Alaoui, A., Sellke, M.: Algorithmic pure states for the negative spherical perceptron. J. Stat. Phys. 189(2), 27 (2022)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献