Abstract
AbstractThe simulation of Dynamic Random Access Memories (DRAMs) on system level requires highly accurate models due to their complex timing and power behavior. However, conventional cycle-accurate DRAM subsystem models often become a bottleneck for the overall simulation speed. A promising alternative are simulators based on Transaction Level Modeling, which can be fast and accurate at the same time. In this paper we present DRAMSys4.0, which is, to the best of our knowledge, the fastest and most extensive open-source cycle-accurate DRAM simulation framework. DRAMSys4.0 includes a novel software architecture that enables a fast adaption to different hardware controller implementations and new JEDEC standards. In addition, it already supports the latest standards DDR5 and LPDDR5. We explain how to apply optimization techniques for an increased simulation speed while maintaining full temporal accuracy. Furthermore, we demonstrate the simulator’s accuracy and analysis tools with two application examples. Finally, we provide a detailed investigation and comparison of the most prominent cycle-accurate open-source DRAM simulators with regard to their supported features, analysis capabilities and simulation speed.
Funder
Fraunhofer-Gesellschaft
Deutsche Forschungsgemeinschaft
Technische Universität Kaiserslautern
Publisher
Springer Science and Business Media LLC
Subject
Information Systems,Theoretical Computer Science,Software
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献