Heuristics and semantic spaces for the analysis of students’ work in mathematical problem solving

Author:

Favier StéphaneORCID,Dorier Jean-Luc

Abstract

AbstractIn this research, our objective is to characterize the problem-solving procedures of primary and lower secondary students when they solve problems in real class conditions. To do so, we rely first on the concept of heuristics. As this term is very polysemic, we exploit the definition proposed by Rott (2014) to develop a coding manual and thus analyze students’ procedures. Then, we interpret the results of these analyses in a qualitative way by mobilizing the concept of semantic space (Poitrenaud, 1998). This detailed analysis of students’ procedures is made possible by collecting audiovisual data as close as possible to the students’ work using an action camera mounted on the students’ heads. We thus succeed in highlighting three different investigation profiles that we have named explorer, butterfly, and prospector. Our first results tend to show a correlation with these profiles and the success in problem-solving, yet this would need more investigation.

Funder

Swiss National Science Foundation

University of Geneva

Publisher

Springer Science and Business Media LLC

Reference37 articles.

1. Brousseau, G., Brousseau, N., & Warfield, V. (2014). Teaching fractions through situations: A fundamental experiment. Springer.

2. Carlson, M. P., & Bloom, I. (2005). The cyclic nature of problem solving: An emergent multidimensional problem-solving framework. Educational Studies in Mathematics, 58(1), 45–75.

3. Duval, R. (1993). Registres de représentation sémiotique et fonctionnement cognitif de la pensée. Annales De Didactique Et De Sciences Cognitives, 5, 37–65.

4. Favier, S. (2022a). A characterization of the problem solving processes used by students in classroom: Proposition of a descriptive model. Hiroshima Journal of Mathematics Education, 15(1), 35–53.

5. Favier, S. (2022b). Étude des processus de résolution de problèmes par essais et ajustements en classe de mathématiques à Genève [Doctoral dissertation, University of Geneva]. https://archive-ouverte.unige.ch/unige:159466

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3