Abstract
AbstractPrevious studies have proposed that students’ mathematical understanding develops dynamically through the process known as folding back, in which learners revisit earlier forms of understanding and use them to build even deeper levels of mathematical understanding. Digital learning environments, where students can manipulate representations, are often used to enable students to notice properties, patterns, or rules. When working in such an environment, students usually receive support from the environment and the teacher. The interplay between these different sources of support is important according to previous studies. In this study, we examine this interplay in the case of folding back. The study aims to understand how the teacher, together with the learning environment, can support the process of folding back. We collected data from second, fourth, and sixth grade students as they worked in groups to develop a rule for balancing a balance beam in a digital learning environment designed to support folding back. One pre-service teacher guided each three-student group. Data were analyzed by identifying occasions for folding back and characterizing different ways in which the interplay between the teacher and the environment supported students’ folding back. We found different kinds of synergy between the two sources of support. The teachers followed up on and augmented the support from the environment, initiated supplementary folding back, and reinforced the support from the environment. We also found non-synergy between the two sources of support, when the teachers’ support was not aligned with support from the environment.
Publisher
Springer Science and Business Media LLC
Subject
Education,General Mathematics
Reference33 articles.
1. Brown, A. L., Ash, D., Rutherford, M., Nakagawa, K., Gordon, A., & Campione, J. C. (1993). Distributed expertise in the classroom. In G. Salomon (Ed.), Distributed cognitions: Psychological and educational considerations (pp. 188–228). Cambridge University Press.
2. Drijvers, P., Doorman, M., Boon, P., Reed, H., & Gravemeijer, K. (2010). The teacher and the tool: Instrumental orchestrations in the technology-rich mathematics classroom. Educational Studies in Mathematics, 75(2), 213–234.
3. Erbas, A. K., & Yenmez, A. A. (2011). The effect of inquiry-based explorations in a dynamic geometry environment on sixth grade students’ achievements in polygons. Computers & Education, 57(4), 2462–2475.
4. GeoGebra. (2021). GeoGebra. Retrieved December 1, 2021, from http://geogebra.org
5. Graasp. (2021). Graasp. Retrieved December 1, 2021, from http://graasp.eu
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献