1. Alibert, D., & Thomas, M. (1991). Research on mathematical proof. In D. Tall (Ed.), Advanced mathematical thinking (pp. 215–230). Dordrecht, The Netherlands: Kluwer Academic Publishers.
2. Artigue, M. (2002). L’intégration de calculatrices symboliques à l’enseignement secondaire: Les leçons de quelques ingénieries didactiques [The integration of symbolic calculators in secondary education: some lessons on didactic engineering]. In D. Guin & L. Trouche (Eds.), Calculatrices symboliques. Transformer un outil en un instrument du travail mathématique : un problème didactique (pp. 277–349). Grenoble: La Pensée Sauvage.
3. Bartolini Bussi, M. G. (2010). Historical artefacts, semiotic mediation, and teaching proof. In G. Hanna, H. N. Jahnke, & H. Pulte (Eds.), Explanation and proof in mathematics: Philosophical and educational perspectives (pp. 151–168). New York: Springer.
4. Bloch, I. (2003). Teaching functions in a graphic milieu: What forms of knowledge enable students to conjecture and prove? Educational Studies in Mathematics, 52, 8–28.
5. Breidenbach, D., Dubinsky, E., Hawks, J., & Nichols, D. (1992). Development of the process conception of function. Educational Studies in Mathematics, 23, 247–285.