1. Arzarello, F., & Sabena, C. (2011). Semiotic and theoretic control in argumentation and proof activities. Educational Studies in Mathematics, 77(2/3), 189–206.
2. Balacheff, N. (2013). cK¢, a model to reason on learners’ conceptions. In M. V. Martinez & A. Castro (Eds.), Proceedings of the 35th annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (PME–NA) (pp. 2–15). Chicago, IL: PME.
3. Chinnappan, M., White, B., & Trenholm, S. (2018). Symbiosis between subject matter and pedagogical knowledge in geometry. In P. Herbst et al. (Eds.), International Perspectives on the Teaching and Learning of Geometry in Secondary Schools (pp. 145–161). New York, NY: Springer.
4. Coutat, S., & Richard, P. R. (2011). Les figures dynamiques dans un espace de travail mathématique pour l’apprentissage des propriétés mathématiques. Annales de Didactique et de Sciences Cognitives, 16, 97–126.
5. Darses, F. (2001). Providing practitioners with techniques for cognitive work analysis. Theoretical Issues in Ergonomics Science, 2, 268–277.