Abstract
AbstractTransforming liquid smoke to powder form can provide convenience for use and storage. Liquid smoke was prepared by fast pyrolysis technology using a fluidised bed and converted to smoke powder by spray-drying or freeze-drying processes. Both drying processes effectively retained the bioactive compounds in the powder encapsulates with retention efficiencies up to 80%. The bioactive capacities were approximately two times higher than liquid smoke. Spray-drying did not induce thermal damage to the bioactive compounds, and the dominant compounds were retained in the powders. Gas chromatography–mass spectrometry and principal component analysis indicated that the chemical composition was not significantly changed after both drying methods, but small molecular carbonyls, furans and phenols were partially lost. The spray-dried particles had a spherical shape, while freeze-dried particles had irregular shapes because of different powder preparation methods. The particle size of spray-dried powders was in the range of 6.3 to 6.9 µm, while the value for freeze-dried powders was decreased from 580.4 to 134.7 µm by increasing the maltodextrin concentration. The freeze-dried powders performed better in terms of flowability and cohesiveness because of their relatively high density and large particle size. This study revealed that both encapsulation methods could efficiently prepare smoke powder. Spray-drying process would be suitable for large-scale production, while freeze-drying could be used to optimize the encapsulation efficiency of bioactive compounds.
Funder
The University of Auckland
University of Auckland
Publisher
Springer Science and Business Media LLC
Subject
Industrial and Manufacturing Engineering,Process Chemistry and Technology,Safety, Risk, Reliability and Quality,Food Science
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献