Development of O/W Pickering Emulsions Stabilized with Leek Leaf Trimmings Using Batch and Continuous Modes

Author:

Marques M. P.,Sanchez-Salvador J. L.,Monte M. C.,Blanco A.,Santos R. J.,Dias M. M.,Manrique Y. A.,Brito M. S. C. A.

Abstract

AbstractVegetable trimmings can be used to stabilize edible O/W Pickering emulsions. The lignocellulosic biomass (LCB) from the leek trimmings was mechanically treated to produce high-yield lignocellulose micro and nanofibrils (LCF) using a high-pressure homogenizer (HPH). Different O/W phase ratios (20/80, 30/70, and 40/60 wt.%) were studied. The use of the micro/nano cellulosic fibers increased the stabilization of the Pickering emulsions by 30–40%. In all cases, stable emulsions were obtained, with emulsification indexes > 92%. The respective stabilization mechanism was thoroughly analysed from confocal laser scanning, and cryo-scanning electron microscopy, which showed the fibers are not coating the droplets but forming a network that traps the droplets and prevents coalescence. The most stable batch formulations, O/W 30/70 wt.% (LCB 4.2 wt.%) and O/W 40/60 wt.% (LCB 3.6 wt.%), were also studied in continuous mode using NETmix technology. Results show the scale-up feasibility of the production of Pickering emulsions containing LCF. Most significantly, this work proposes a continuous process to produce Pickering emulsions stabilized with a natural biopolymer extracted from leek trimmings, which is suitable to industrial manufacturing processes. This valorizes the vegetable trimmings that are usually tossed away as waste, creating new market niches and business models based on circular economy concepts. Graphical Abstract

Funder

FEDER

UCM

Universidade do Porto

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Process Chemistry and Technology,Safety, Risk, Reliability and Quality,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3