Multiphysics Modelling of Stone Wool Fire Resistance

Author:

Paudel Deepak,Rinta-Paavola Aleksi,Mattila Hannu-Petteri,Hostikka SimoORCID

Abstract

AbstractIn fire resistance tests, stone wool’s organic matter undergoes exothermic oxidative reactions sustained by external heat, causing mass transfer in the structure. The previous modelling attempts, lacking the mass transfer physics, fall short in predicting the temperature of high density and high organic content samples. To fill this gap in the fire engineering modelling capability, we include mass transfer in our calculation, and validate the model using experimental fire resistance data. As an alternative, we use a heat conduction -based model lacking the gas transfer but with reaction kinetics coupled to the stone wool’s organic mass %. The results show that the thermal effects of the oxidative degradation can be predicted by introducing the simplified diffusion processes. The oxygen transfer and exothermic reactions depend upon the amount of organic content, and the uncertainty of temperature predictions is $$\pm \,20\%$$ ± 20 % . In average, temperatures and critical times are more accurately predicted by the heat conduction model, while, the peak temperature prediction uncertainty is low ($$\pm \,10\%$$ ± 10 % ) with the multiphysics model. The uncertainty compensation method reduces the difference between the two model predictions. Nevertheless, further validation study is needed to generalize the uncertainty compensation metrics. Finally, we demonstrate how a gas flow barrier on the cold side (sandwich) can effectively reduce the peak temperature of the high organic content-stone wools.

Funder

Palosuojelurahasto

Finnish State Nuclear Waste Management Fund

Aalto University

Publisher

Springer Science and Business Media LLC

Subject

Safety, Risk, Reliability and Quality,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3