Critical Factors Determining the Onset of Backdraft Using Solid Fuels

Author:

Wu Chia Lung,Santamaria Simón,Carvel RickyORCID

Abstract

AbstractBackdraft is an explosive fire phenomenon which typically occurs during fire-fighting activities, occasionally leading to fire-fighter fatalities. Real backdraft incidents involve complex fuel gas mixtures consisting of the products of underventilated burning and pyrolysis following burnout. However, most experimental research into backdraft has used methane gas or flammable liquids as fuel. Some aspects of real backdraft behavior may have been overlooked as a consequence of this simplicity. A reduced scale series of compartment fire tests have been carried out to investigate the critical factors governing the onset of backdraft, using polypropylene and high density polyethylene samples as fuel. It is established that there are critical temperatures for auto-ignition of the pyrolysis gases leading to backdraft which vary with fuel properties. For polypropylene the highest temperature in the compartment must be above 350°C for auto-ignition of the fuel gases, while mixtures in the presence of a pilot source can be ignited down to about 320°C. Backdraft cannot occur when the compartment temperature is below 320°C. For polyethylene, the corresponding temperature for auto-ignition is 320°C. In parallel with these tests, a series of pyrolysis investigations have been carried out using the fire propagation apparatus, with FTIR gas analysis. The observed critical temperatures for backdraft correlate well with the evolved pyrolysis gases. Analysis shows that higher temperatures are required for backdraft when the CO/CO2 ratio is small, and that below the auto-ignition temperature, backdraft can only occur above a CO/CO2 ratio of about 35%. It is concluded that the crucial factors determining whether backdraft occurs or not are the maximum temperature and the CO/CO2 ratio in the compartment, prior to opening the door.

Funder

Ministry of Education

Publisher

Springer Science and Business Media LLC

Subject

Safety, Risk, Reliability and Quality,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3