Computational Study of Compartment Size Effects on Backdraft Intensity

Author:

Ha Su-Im,Oh Chang Bo,Baek Bit-Na

Abstract

A computational study was performed to evaluate the effects of compartment size on backdraft intensity. The compartment sizes were selected such that each direction was enlarged by a factor of 2, 2.5, 2.625, and 3 based on the reduced-scale compartment of a previous experimental study. A fire dynamics simulator was used for the computation, and a large eddy simulation and a mixing-controlled fast chemistry combustion model were adopted. Results revealed that the overall equivalence ratio defined by the amounts of fuel inside the compartment and oxygen induced from the opening had similar values at the moment when the air reached the inside wall. The fuel–air mixing inside the compartment was found to be achieved more rapidly with a decreased compartment size. The peaks of pressure and heat release rate inside the compartment increased with an increase in compartment size. However, these peaks were found to increase exponentially with an increase in the ratio of the compartment volume and opening size, and the correlation showed a very high R-squared value.

Funder

Pukyong National University

Publisher

Korea Institute of Fire Science and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3