1. H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, in “Function Spaces, Differential Operators and Nonlinear Analysis”, H. Triebel, H.J. Schmeisser (eds.), Teubner-Texte Math. 133, Teubner, Stuttgart, 1993, pp. 9–126.
2. T. Hillen and K. Painter, Global existence for a parabolic chemotaxis model with prevention of overcrowding, Adv. Appl. Math. 26 (2001), 280–301.
3. D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. I. Jahresber. Deutsch. Math.-Verein. 105 (2003) 103–165.
4. E. Keller and L. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol. 26 (1970), 399–415.
5. J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod, Paris, 1969.