Nonnegative solutions to a doubly degenerate nutrient taxis system

Author:

Li Genglin,Winkler Michael

Abstract

<p style='text-indent:20px;'>This paper deals with the doubly degenerate nutrient taxis system</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{eqnarray*} \left\{ \begin{array}{ll} u_t = (uv u_x)_x - (u^2 vv_x)_x + \ell uv, \qquad &amp; x\in \Omega, \ t&gt;0, \\ v_t = v_{xx} -uv, \qquad &amp; x\in \Omega, \ t&gt;0, \end{array} \right. \end{eqnarray*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>in an open bounded interval <inline-formula><tex-math id="M1">\begin{document}$ \Omega\subset \mathbb{R} $\end{document}</tex-math></inline-formula>, with <inline-formula><tex-math id="M2">\begin{document}$ \ell \ge0 $\end{document}</tex-math></inline-formula>, which has been proposed to model the formation of diverse morphological aggregation patterns observed in colonies of <i>Bacillus subtilis</i> growing on the surface of thin agar plates.</p><p style='text-indent:20px;'>It is shown that under the mere assumption that</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE2"> \begin{document}$ \begin{eqnarray*} \left\{ \begin{array}{l} u_0\in W^{1,\infty}( \Omega) \mbox{ is nonnegative with } u_0\not\equiv 0 \qquad \mbox{and} \\ v_0\in W^{1,\infty}( \Omega) \mbox{ is positive in } \overline{\Omega}, \end{array} \right. \qquad \qquad (\star) \end{eqnarray*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>an associated no-flux initial boundary value problem possesses a globally defined and continuous weak solution <inline-formula><tex-math id="M3">\begin{document}$ (u,v) $\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id="M4">\begin{document}$ u\ge 0 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M5">\begin{document}$ v&gt;0 $\end{document}</tex-math></inline-formula> in <inline-formula><tex-math id="M6">\begin{document}$ \overline{\Omega}\times [0,\infty) $\end{document}</tex-math></inline-formula>, and that moreover there exists <inline-formula><tex-math id="M7">\begin{document}$ u_\infty\in C^0( \overline{\Omega}) $\end{document}</tex-math></inline-formula> such that the solution <inline-formula><tex-math id="M8">\begin{document}$ (u,v) $\end{document}</tex-math></inline-formula> approaches the pair <inline-formula><tex-math id="M9">\begin{document}$ (u_\infty,0) $\end{document}</tex-math></inline-formula> in the large time limit with respect to the topology <inline-formula><tex-math id="M10">\begin{document}$ (L^{\infty}( \Omega)) ^2 $\end{document}</tex-math></inline-formula>. This extends comparable results recently obtained in [<xref ref-type="bibr" rid="b17">17</xref>], the latter crucially relying on the additional requirement that <inline-formula><tex-math id="M11">\begin{document}$ \int_\Omega \ln u_0&gt;-\infty $\end{document}</tex-math></inline-formula>, to situations involving nontrivially supported initial data <inline-formula><tex-math id="M12">\begin{document}$ u_0 $\end{document}</tex-math></inline-formula>, which seems to be of particular relevance in the addressed application context of sparsely distributed populations.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Analysis,General Medicine

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Roles of density-related diffusion and signal-dependent motilities in a chemotaxis–consumption system;Calculus of Variations and Partial Differential Equations;2024-08-05

2. L∞ bounds in a two-dimensional doubly degenerate nutrient taxis system with general cross-diffusive flux;Journal of Differential Equations;2024-08

3. Taxis-driven complex patterns of a plankton model;Chaos: An Interdisciplinary Journal of Nonlinear Science;2024-06-01

4. Superlinear degradation in a doubly degenerate nutrient taxis system;Nonlinear Analysis: Real World Applications;2024-06

5. Global classical solutions and stabilization for a class of competition models with density-dependent motility;Discrete and Continuous Dynamical Systems;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3