High-Speed Forming of Continuous Fiber Reinforced Thermoplastics

Author:

Mattner TobiasORCID,Popp Julian,Kleffel Tobias,Gröschel Christian,Drummer Dietmar

Abstract

AbstractForming processes of continuous fiber reinforced thermoplastic materials are oftentimes limited to high volume production due to the high costs for tooling and processing machines. This study suggests the combined use of a cold and simple tool and high forming speeds to reduce tooling and processing costs and enable the usage of common stamping machines. Half sphere samples are produced from single and two-layer polypropylene and glass fiber organo-sheets in a custom built drop tower and analyzed for their geometry, degree of re-consolidation, surface quality and potential fiber damage using a variety of microscopy techniques. While only mediocre degrees of re-consolidation and limited surface qualities can be achieved with the combination of a cold tooling and state-of-the-art forming speeds of 0–0.5 ms−1, the usage of a higher forming speed of 3 ms−1, vastly improves surface qualities and the degree of re-consolidation without any detectable fiber damage. This effect is more pronounced in the dual layer material. Extensive knowledge on the forming behavior of continuous fiber reinforced thermoplastics at high cooling rates and high speeds of deformation is required for sufficient process control and future studies need to further elaborate and quantify the influencing factors and limits of high-speed forming of continuous fiber reinforced thermoplastics.

Funder

Bundesministerium für Wirtschaft und Energie

Publisher

Springer Science and Business Media LLC

Subject

Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3