Author:
Kong Lingchen,Li Yu,Feng Wei
Abstract
AbstractF-doping hard carbon (F–HC) was synthesized through a mild fluorination at temperature at relative low temperature as the potential anode for sodium-ion batteries (SIBs). The F-doping treatment to HC expands interlayer distance and creates some defects in the graphitic framework, which has the ability to improve Na+ storage capability through the intercalation and pore-filling process a simultaneously. In addition, the electrically conductive semi-ionic C–F bond in F–HC that can be adjusted by the fluorination temperature facilitates electron transport throughout the electrode. Therefore, F–HC exhibits higher specific capability and better cycling stability than pristine HC. Particularly, F–HC fluorinated at 100 °C (F–HC100) delivers the reversible capability of 343 mAh/g at 50 mAh/g, with the Coulombic efficiency of 78.13%, and the capacity retention remains as 95.81% after 100 cycles. Moreover, the specific capacity of F–HC100 returns to 340 mAh/g after the rate capability test demonstrates its stability even at high current density. The enhanced specific capacity of F–HC, especially at low-voltage region, has the great potential as the anode of SIBs with high energy density.
Publisher
Springer Science and Business Media LLC
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献