C/Co3O4/Diatomite Composite for Microwave Absorption

Author:

Liao Yan1,Wang Dashuang1,Zhu Wenrui1,Du Zhilan1,Gong Fanbo1,Ping Tuo2,Rao Jinsong1,Zhang Yuxin1ORCID,Liu Xiaoying3

Affiliation:

1. College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China

2. Beijing Spacecrafts, China Academy of Space Technology, Beijing 100194, China

3. Military Installations Department, Army Logistics Academy of PLA, Chongqing 401331, China

Abstract

Transition metal oxides have been widely used in microwave-absorbing materials, but how to improve impedance matching is still an urgent problem. Therefore, we introduced urea as a polymer carbon source into a three-dimensional porous structure modified by Co3O4 nanoparticles and explored the influence of different heat treatment temperatures on the wave absorption properties of the composite. The nanomaterials, when calcined at a temperature of 450 °C, exhibited excellent microwave absorption capabilities. Specifically, at an optimized thickness of 9 mm, they achieved a minimum reflection loss (RLmin) of −97.3 dB, accompanied by an effective absorption bandwidth (EAB) of 9.83 GHz that comprehensively covered both the S and Ku frequency bands. On the other hand, with a thickness of 3 mm, the RLmin was recorded as −17.9 dB, with an EAB of 5.53 GHz. This excellent performance is attributed to the multi-facial polarization and multiple reflections induced by the magnetic loss capability of Co3O4 nanoparticles, the electrical conductivity of C, and the unique three-dimensional structure of diatomite. For the future development of bio-based microwave absorption, this work provides a methodology and strategy.

Funder

Graduate Scientific Research and Innovation Foundation of Chongqing, China

Fundamental Research Funds for the Central Universities

Technology Innovation and Application Development Special Project of Chongqing

Scientific Research Project of Chongqing Ecological Environment Bureau

Electron Microscopy Center of Chongqing University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3