A genome-wide assessment of the genetic diversity, evolution and relationships with allied species of the clonally propagated crop Vanilla planifolia Jacks. ex Andrews

Author:

Favre Félicien,Jourda Cyril,Grisoni Michel,Piet Quentin,Rivallan Ronan,Dijoux Jean-Bernard,Hascoat Jérémy,Lepers-Andrzejewski Sandra,Besse Pascale,Charron CarineORCID

Abstract

AbstractThe Vanilla genus is a complex taxonomic group characterized by a vegetative reproduction mode combined with intra- and inter-specific hybridizations, and polyploidy events. These factors strongly impact the diversification of the genus and complicate the delimitation of taxa. Among the hundred Vanilla species, Vanilla planifolia Jacks. ex Andrews and Vanilla × tahitensis J. W. Moore are the main cultivated aromatic species. We applied Genotyping-by-Sequencing to explore the genetic diversity of these two cultivated vanilla species, seven closely related species and nineteen interspecific hybrids. The inter- and intra-specific relationships of 133 vanilla accessions were examined based on 2004 filtered SNPs. Our results showed a strong genetic structuring between the nine species studied, with wild species showing much lower heterozygosity levels than cultivated ones. Moreover, using Bayesian clustering analyses, the kinship of several hybrids could be verified. We evidenced in particular that Vanilla sotoarenasii and Vanilla odorata C.Presl may be the parental species of V. x tahitensis. The analysis of 1129 SNPs for 84 V. planifolia accessions showed a clear genetic demarcation between the vegetatively propagated traditional vanilla cultivars compared to the accessions derived from sexual reproduction, and a higher genetic diversity and lower heterozygosity of the latter (Ho = 0.206) compared to the former (Ho = 0.362). Our data are consistent with a single-step domestication for V. planifolia in accordance with the recent history of its cultivation. It also opens avenues to breed new V. planifolia varieties adapted to biotic and abiotic constraints and to reduce mutational load induced by clonal propagation.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Agronomy and Crop Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3