Abstract
Abstract
Limes as a fruit crop are of great economic importance, key to Asian and South American cuisines and cultivated in nearly all tropical and subtropical regions of the world. Demand for limes is increasing, driven by World Health Organization recommendations. Pests and pathogens have significantly reduced global productivity, while changes in agronomic techniques aim to alleviate this stress. We present here a holistic examination of the major biotic (pests and pathogens) and abiotic (environment and socioeconomic) factors that presently limit global production of lime. The major producers of limes are India, China and Mexico, while loss of lime production in the United States from 2006 has led many countries in the Western Hemisphere (Mexico, Costa Rica and Brazil) to export primarily to the USA. The most widespread invertebrate pests of lime are Toxoptera citricida and Scirtothrips citri. Another insect, Diaphorina citri, vectors both Huanglongbing (HLB) and Witches Broom of Lime, which are particularly destructive diseases. Developing agronomic techniques focus on production of resistant and pathogen-free planting materials and control of insect vectors. HLB infects citrus in nearly all growing regions, and has been particularly devastating in Asian citrus. Meanwhile, Citrus tristeza virus has infected over 100 million citrus trees, mainly in the Americas and Mediterranean. Currently, Witches Broom Disease of Lime is localised to the Middle East, but recently it has been detected in South America. The range of its vectors (D. citri and Hishimonus phycitis) further raises concerns about the potential spread of this disease. Abiotic threats to lime production are also a significant concern; key areas of lime production such as Mexico, India and the Middle East suffer from increasing water stress and high soil salinity, which combined with invasive pests and pathogens, may eliminate lime production in these areas. To ensure future security in lime production, policy makers, researchers and growers will need to examine the potential of more resistant lime cultivars and establish novel areas of cultivation.
Funder
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Publisher
Springer Science and Business Media LLC
Subject
Horticulture,Plant Science,Agronomy and Crop Science
Reference185 articles.
1. Abad-Moyano R, Pina T, Perez-Panades J, Carbonell EA, Urbaneja A (2010) Efficacy of Neoseiulus californicus and Phytoseiulus persimilis in suppression of Tetranychus urticae in young clementine plants. Exp Appl Acarol 50:317–328
2. Achachi A, Ait Barka E, Ibriz M (2014) Recent advances in citrus psorosis virus. Virus Dis 25:261–276
3. Agunloye OJ (1987) Trapping and chemical control of Ceratitis capitata (Wied) (Diptera, Tephritidae) on sweet orange (Citrus sinensis) in Nigeria. J Hortic Sci 62:269–271
4. Ahlawatl Y, Gopal K, Charaya M (2005) Citrus yellow mosaic virus is associated with mosaic disease in Rangpur lime rootstock of citrus. Curr Sci 89:1596–1600
5. Akbari L, Seraj AA (2007) Predacious mites for control of citrus thrips, Scirtothrips citri (Thysanoptera: Thripidae) in nursery citrus. In: Proceedings of the XVI international plant protection congress, Glasgow, pp 312–313
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献