Abstract
Abstract
In this work, the interactions between adenine–adenine di-nucleotide (DA2N) and carbon nanotube (CNT) in the presence of Lysyllysine (LL) was studied by the molecular dynamics simulation. Different carbon nanotubes including (5.5), (6.6) and (7.7) were used to investigate the effect of CNT type. The binding energies were calculated using the molecular mechanics-Poisson Bolzmann surface area method. The results showed that the contribution of the van der Waals interactions between DA2N and CNT was greater than that of the electrostatic interactions. The LL significantly enhanced the electrostatic interactions between the DA2N and CNT (6.6). The quantum calculations revealed that the sensor properties of the DA2N were not significantly affected by the CNT and LL. However, the five-membered ring of adenine played a more important role in the sensing properties of the DA2N. The obtained results are consistent with the previous experimental observations that can help to understand the molecular mechanism of the interaction of DA2N with CNT.
Graphic abstract
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献